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NANOSCALE MAGNETIC TRAPS

I. F. LYUKSYUTOV

Physics Department, Texas A&M University,
College Station TX 77843-1242, USA

Received (to be inserted
Revised by Publisher)

We show that nanofabricated magnetic textures allow the trapping and manipulation of
nanosize diamagnetic systems, such as carbon nanotubes, proteins and membranes as
well as cold atoms. The latter can have temperatures as high as 1K. Magnetic textures,
which can be used as traps, include films, dots and nanowires, both single and in arrays.
Manipulation with trapped nanoparticles/atoms is possible by using external magnetic
fields. We also briefly discuss prospects for magnetic traps at the micron scale.

In 1839 Earnshaw! proved that no stable equilibrium is possible if particles in-
teract according to Coulomb’s law, or any interaction having 1/R? behavior. Later
Lord Kelvin? showed that diamagnetic materials represent an exception: for them,
stable equilibrium is possible. In 1939 Braunbek® published a detailed study of
diamagnetic levitation. He experimentally obscrved the levitation of graphite and
bismuth. In the Braunbcek experiment the maximum field variation was about 2.4T
over the distance of 2mm. Recently experimental studics of levitation have been
performed by Geim and coworkers*=®. A brief review on diamagnetic levitation
is given in Ref.6. Magnetic fields of about 0.005 T generated by currents in mi-
crowires 50-100pm wide on semiconductor chips have been recently usced to create
magnetic traps to capture ultra-cold atoms (which have a magnetic moment) scveral
hundred microns above the surface of the chips (the so-called Atomic Chip). Us-
ing these traps, experimentalists manipulated ensembles of atoms”®, and observed
Bose-Einstein condensation®. Different types of current based planar magnetic traps
have been discussed, e.g. in Ref.10. In this article T show that traps can be real-
ized as magnetic nanostructures. Although it is easier to control the magnetic field
by varying the current, the use of magnetic nanostructures as traps has important
advantages. Indeed, the stray magnetic field at the surface of a magnetic film,
magnetic nanowire or magnetic dot can be of the order of 27 M, where M is the
magnetization. This corresponds to the Tesla range. A second advantage is that
magnetic elements of nanoscale size are in a single domain state. As a result, the
magnetic field goes outside of the magnetic structure in the contrast to the multido-



main state for which the magnetic flux may be closed inside the magnet. Thus a
magnetic field of the order of a Tesla may appear on the surface of magnetic nanos-
tructures. As a result, nanostructure based magnetic traps can produce a strong
magnetic field in the range of a Tesla, and huge gradients of the magnetic field, up
to 108T /m. This value of magnetic field gradient is 10® times larger than that used
in Atomic Chips.

The dramatic increase in field gradient, i.e. in the ponderomotive force, opens a
new direction in application of magnetic traps: trapping of diamagnetic objects. In
this case, the important parameter is Gg = (1/2)|V.B?| which is proportional to the
magnitude of the force density which acts on a diamagnetic substance. In the case
of the Braunbek experiments® the maximum value of G was about 2.9 x 103T? /m.
According to Ref.%, the threshold value for water levitation is 1400 T?/m. As
proposed in this article, it is feasible to achieve values of Gr ~ 108T?/m. At such
values of G g, the magnetic force is much greater than the gravitational force which
can be ignored. The general problem of magnetic traps for nanoparticles goes far
beyond the scope of this letter. Below we only formulate some simple generic models
and describe briefly their properties.

Linear Magnetic Trap: Consider a diamagnetic rod (e.g. nanotube, or protein
molecule) of volume V, length L and magnetic susceptibility x < 0. Let the mag-
netic field be generated by the edge of a magnetic ilm (covering half of an infinite
substrate) with the thickness d and magnetization M, normal to the film. At a
distance R much larger than d the magnetic film edge generates a field of strength
2Md/R. Let an external magnetic field By be applied normal to the film and an-
tiparallel to the stray magnetic field above the film edge. Then the net magnetic
field on a straight line parallel to the film edge at the distance Ry = d(2M/By) is
zero. As a result, stable trapping is possible. The energy per unit length F; of a
diamagnetic rod placed parallel to the edge at a distance R from the magnetic layer
is given by: v

B 2
Tatial B*(R). (1)
The valuc 1 — p is 1.6x107* for graphite, 1.7x10~* for bismuth and 8.8x107¢
for water; B is the total magnetic field. The stable equilibrium point is at the
distance of Ry = d(2M/By) above the edge of the film. This type of magnetic field
distribution has been used to trap ultra-cold atoms above atomic chips”®. The
linear trap allows particles to move along the trap. It can be closed by changing
the direction of the magnetic film edge (e.g., rotate it by 7/2 similar to the traps
used in atomic chips”).

Although magnetic field gradients are large, the depth of the potential well for
a small diamagnetic nanoparticle is small since the diamagnetism is normally weak.
The potential well can be made deeper by using large nanoparticles like nanotubes,
proteins and membranes. Indeed, in a field of 1T the induced magnetic moment
for 10* carbon atoms (|x| ~ 10~%) is of the order of one 1z which corresponds to
a potential well depth of the order of 1K. Such temperatures can be achieved by
using helium vapor cooling. By increasing the nanotube (molecule) size by a factor
of 103, it could be possible to achieve stable trapping at room temperatures.
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The above analysis is valid for the case of a film with in-plane magnetization
M, perpendicular to the edge. The magnitude of the field is 2rMd/R and the field
is dirccted radially toward or from the edge. The magnetic trap in this case can
be created by an applied magnetic field normal to the film and antiparallel to the
stray field from the film edge.

A magnetic dot of thickness d and radius rgy with magnetization M normal to
the film produces a stray field which is similar to the magnetic field from a current
loop with I = ¢Md along the edge of the dot. The magnetic field along a straight
line which is normal to the dot and passes through its center, is normal to the film
and is equal to B, = (2rMdr2)/(r% + R?)%/2, where R is the distance from the
dot. With uniform externally applied magnetic field opposite to B,, it is possible
to obtain zero field at some point above the dot. A simple analysis shows that the
vicinity of this point represents a stable trap for a diamagnetic nanoparticle. The
position of the trap can be easily shifted by variation of the external field.

Magnetic Field from an Array of Magnetic Nanorods: A convenient approach to
preparation of nanostructured materials is to synthesize the desired material within
the pores of a porous membrane (template)!l.
films'2, molecular sieves, track-etched mica'®, polymer membranes' and porous an-
15 are some representative examples for such templates.
Porous alumina membranes are prepared electrochemically from aluminum metal'®.
Under specific conditions of anodization, it is possible to obtain a highly ordered
hexagonal array of pores, with pore densities as high as 10'! pores/cm? (Ref.'®).
Such alumina membranes with pore diameters down to 10 nm are commercially
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available. General magnetic characteristics (e.g. saturation magnetization, coercive
field, etc.) of arrays of nanorods (nanowires) fabricated in alumina templates were
studied by many groups (see review in Ref.}®). However, we are not aware of any
study of the magnetic properties at the micrometer or nanometer scale. Below we
discuss magnetic properties at such scales in connection with magnetic nanotraps.

An infinitely long magnetic rod produces no external magnetic field. The mag-
netic flux is concentrated inside the infinite rod. If the Magnetic Nanorod (MNR )is
finite, the magnetic flux goes outside. Consider a periodic square array of magnetic
rods with lattice constant a. Let the length L and radius R ~ a of cach rod be such
that the ratio L/R = A > 1. The valuc of A can be as large as 102. The lateral
scale of the alumina template can be in the ¢m range. It is easy to evaluate the
magnetic field inside the template with MNR’s using a similarity with the electric
field from a capacitor. The stray magnetic field from MNR’s with parallel magneti-
zation produces a homogeneous field opposite to the MNR magnetization direction
inside the template. The magnetic field is inhomogeneous near the MNR. ends on
a length scale of the order of a. This deviation from homogeneity disappears expo-
nentially with distance from the surface. The magnetic field values can be found
from the condition of zero net flux in the system (the net flux produced by each rod
is exactly zero). If the unit cell area of the MNR lattice is A, then the magnetic field
I;TZ- inside the template, but outside the MNR is directed opposite to M and is given
by: H; = —ArM(7R?/A) . Inside the MNR B = 4xM + H = 4xM (1 — (nR2/A)).



In this particular example we assume that the coercive field is larger than |H;|.
This assumption is not restrictive in a recal experiment: an cxternal magnetic field
parallel to the rod magnetization direction will keep the direction of magnetization.
Consider two square sublattices on the template surface, one with lattice sites in
the centers of MNR ends and the other its conjugate. The magnetic field on these
two sublattices is directed normal to the template and has the opposite direction on
each sublattice. The in-plane magnetic field component is zero due to the symmetry.
Consider the field on the template surface outside the MNR. The magnetic field can
be found by using the electrostatic analogy and solving Laplace’s equation with the
surface charge density divM. Such “charges” on the MNR on one end can create
only an in-plane field component on the surface of the template at that end. This
means that the normal component of the field is due to the MNR “charges” on the
other side of the template: HY) = —27 M (7R2/A). On the surface of the MNR the
normal component of the magnetic field is given by: H{MN®) = ornf (1—(7wR2%/A)).
This consideration assumes that the magnetization M is directed strictly along the
MNR. In a real situation, the magnetic field distribution can deviate from the
idealized picture above. The MNR array could produce very large magnetic field
gradients, up to 10T /m. Similar arguments can be used for an array of magnetic
dots with magnetization normal to the dot and to the magnetic film with normal
magnetization and with an array of holes (anti-dots). Both arrays of nanowires
and dots/anti-dots can be used for trapping single diamagnetic particles, extended
objects like membranes or cold atoms.

Multilayered Magnetic Trap: The large gradients of the magnetic field can be
achieved with a layered structure built from alternating magnetic and non-magnetic
layers. This structure should have well defined edge. For simplicity we assume that
the plane of the edge is normal to the film plane. Consider the case when the
magnetization M is parallel to the multilayered film plane and is normal to the
edge surface. To analyze the magnetic field distribution, we can apply the same
approach as in the case of the array of magnetic nanorods. If the period of the
layered structure is D and magnetic layer thickness is D,,,, then the magnetic field H;
inside the non-magnetic layer, is given by: H; = —4nM(D,,/D) . Insidec magnetic
layer B = 4nM + H = 4xM(1— (D,,/D)). Consider two sets of lincs parallel to the
layers on the film edge with one set in the centers of the surfaces of the magnetic
and and the second set in the centers of the non-magnetic layers. The magnetic field
on these two sublattices is directed normal to the edge surface and has the opposite
direction on each sublattice. The in-plane magnetic field component is zero due to
the symmetry. The normal component of the magnetic field on the surface of the
magnetic layer is given by: H®) = 2rM(1— (D,,/D)). As in the case of the MNR
array the layered structure can generate magnetic field gradients as large as 103T /m.
The multilayer geometry can be realized at nanoscale by growing multilayer films.
A well known example is that of sensors based on the Giant Magnetoresistance
(GMR) effect. Though it is feasible to grow a stack of such layered structures with
edges, we are not aware of any particular experimental realization. The thickness
of such structures can be limited at the nanoscale e.g. due to the mismatch of the



lattice periods of magnetic and non-magnetic films. However, this type of structure
can be easily rcalized at the submillimeter or micron scale (see below).

Array of Linear Magnetic Traps: As a simple model of the array of the lin-
ear magnetic traps, we propose to use a magnetization distribution in the form
M = M;ysin(kz), where k& = 27/a and a is the stripe structure period, the x-
axis is directed along the surface normal to the stripes and the magnetization is
directed normal to the surface. This model has the following advantages: (i) it
is very simple; (ii) it correctly reproduces the main features of the periodic mag-
netic field created by periodic magnetization distributions. Consider this system
in an external homogeneous magnetic field By = (Boes Boz). The magnetic field
distribution can be found by using the electrostatic analogy and solving Laplace’s
equation with the surface charge density M = Mgysin(kz) at z = 0. The mag-
netic field distribution has the form (z > 0): B, = By, — 27 M cos(kxz) exp(—kz);
B, = By, + 2rm My sin(kz) exp(—kz). The magnetic field energy density is given by
(z>0):

E; = %Mg exp(—kz)(wMgexp(—kz) — By cos(kz) + By, sin(kz)) + Eo.  (2)

where Ey = (1/87)(B3, + B2,). The energy density changes periodically with x. It
is straightforward to check that the potential in Eq.2 provides a set of stable energy
minima which is periodic in the z direction. The position of the energy minima in
Eq.(2) can be changed continuously by changing the external magnetic field EO, thus
providing a method to transport particles along the surface. It is straightforward
to show that the potential of Eq.2 can provide trapping of diamagnetic rods. The
stable trapping of flat objects like membranes can be also realized in the case when
the size of this object is commensurate with the magnetic structure period a. In
the case of the infinite membrane, the force in the z direction averages and provides
the net repulsive force. This repulsive forcenyura79

per unit area of the infinite plate with diamagnetic susceptibility x < 0 and
thickness d is given by F = 472|x|MZkdexp(—2kz). The detailed analysis of the
potential (Eq.2) will be published elsewhere.
2-D Array of Magnetic Traps: As simple model of the two-dimensional array of
magnetic traps we propose to use a magnetization distribution of the form M =
My sin(kz) sin(ky), where k = 27/a and a is the structure period and the magneti-
zation is directed normal to the surface in the z-direction. This model has the same
advantages as the model for an array of the linear magnetic traps. We consider the
z component B,q of the external field. The magnetic field distribution has the form:
B, = —/27 My cos(kz) sin(ky) exp(—+/2kz2), B, = —v/21 My sin(kz) cos(ky) x
exp(—v2kz) B, = B.o + 2wMjsin(kz)sin(ky) exp(—+v/2kz). The magnetic field
energy density is given by (z > 0):

T

Es = ZMg(exp(—Q\/ikz)(l — %cos(2k;v) - %cos(2ky)) + Eg (3)

where Eg = (1/87) B2, + (1/2) My B, sin(kz) sin(ky) exp(—+/2kz). As in the case
of potential of Eq.2 the potential of Eq.3 provides a periodic set of stable energy



minima which are bounded in the z-direction (the latter is due to the different z
dependence of the first term and field dependent term Eg in Eq.3). Similar to
Eq.2, the position of the energy minima in Eq.(3) can be changed continuously by
changing the external magnetic field By,. As in the case of the potential of Eq.2,
the stable trapping of flat objects like membranes can be realized for objects which
are commensurate with the magnetic structure period a. In the case of the infinite
membrane, the force in the z-direction averages and provides the net repulsive force.
This repulsive force per unit area of the infinite plate with diamagnetic susceptibility
x < 0 and thickness d, is F' = 72v/2|x| MZkd, exp(—2+/2kz). The detailed analysis
of the potential in Eq.3 will be published elsewhere.

Rare-earth Magnetic Traps: Rare-earth magnets like samarium-cobalt and neo-
dymium-iron-boron posses unique properties which can make possible stable levita-
tion of diamagnetic materials on a submillimeter scale with commercially available
magnets. The magnetic field on the surface of the rare-carth magnet is in the half
a Tesla range. Commercially available magnets are fabricated by sintering 50-150
pm size powder. Assuming that such materials are still mechanically stable in the
100-200 pm range of thickness, it is feasible to have a typical magnetic field energy
density gradient Gg of the order of Gg ~ 10*T? /m. This value significantly exceeds
the threshold® (1400 T2 /m) for water levitation. The best strategy is to implement
linear arrays of magnetic traps. The layered structure is probably the simplest one
for fabrication. Three possible configurations are: (1) layers of rare-earth magnets
with alternating directions of magnetization; (2) layers of rare-earth magnets with
parallel magnetization that are separated by intermediate layers of magnetically
soft materials with a high saturation magnetization; (3) layers of magnetically soft
material with a high saturation magnetization that a separated by intermediate
non-magnetic layers with the whole assembly then placed in an external magnetic
field. The properties of such systems are described above. In addition to layered
structures the high coercive field of the rare-earth magnets can permit realization
of some (or all) of the following geometries: (i) an array of magnetic columns with
magnetization along long axes of the column in a checker-board-like alternating
magnetization pattern; (ii) a thin magnetic plate with the magnetization normal to
the plate but with a regular array of holes (anti-dots) drilled through the thickness
of the plate by different methods (mechanically, electrochemically, by laser etc);
(iii) an array of anti-dots on the face of the bulk rare-earth magnet with the mag-
netization normal to this face; (iv) an array of grooves in one or both directions
cut on the face of the bulk rare-earth magnet with the magnetization normal to
this face. To get the largest possible average Gg the total area of the anti-dots
(grooves) should be equal to one-half of the face area. The list of possible array
geometries can be easily enlarged to include more exotic magnetic superstructures,
e.g. concentric rings of different depth, spherical or cylindrical profile of the surface
of the bulk magnet, pie-like geometry with an alternating magnetization dircction
in cach sector (piece), etc.

To conclude, I have shown that by using diamagnetism and nanofabrication it
is feasible to trap and manipulate diamagnetic nanoparticles. Nanoscale magnetic



textures can provide stable static traps for nanosize diamagnetic systems like carbon
nanotubes, proteins and membrancs. Manipulation with trapped nanoparticles is
possible via external magnetic fields. The captured nanoparticles are well isolated
from the environment. The proposed traps can be also used in experiments with

ultra-cold atoms and Bose-Einstein condensation.
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